End-to-End Decoupled Training: A Robust Deep Learning Method for Long-Tailed Classification of Dermoscopic Images for Skin Lesion Classification

نویسندگان

چکیده

Due to its increasing incidence, skin cancer, and especially melanoma, is considered a major public health issue. Manually detecting lesions (SL) from dermoscopy images difficult time-consuming process. Thus, researchers designed computer-aided diagnosis (CAD) systems assist dermatologists in the early detection of cancer. Moreover, SL naturally exhibits long-tailed distribution due complex patient-level conditions existence rare diseases. Very limited research for handling this issue exists on detection. In paper, we propose an end-to-end decoupled training lesion classification task. Specifically, initialized network with novel loss function Lf able guide model better representation features. Then, fine-tuned pretrained networks weighted variant helping improve robustness class imbalance. We evaluated our ISIC 2018 dataset against existing methods imbalance approaches The results demonstrated superiority framework, outperforming all compared by minimum margin 2% single model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning for Skin Lesion Classification

Melanoma, a malignant form of skin cancer is very threatening to life. Diagnosis of melanoma at an earlier stage is highly needed as it has a very high cure rate. Benign and malignant forms of skin cancer can be detected by analyzing the lesions present on the surface of the skin using dermoscopic images. In this work, an automated skin lesion detection system has been developed which learns th...

متن کامل

End-to-end Learning of Deep Spatio-temporal Representations for Satellite Image Time Series Classification

In this paper we describe our first-place solution to the discovery challenge on time series land cover classification (TiSeLaC), organized in conjunction of ECML PKDD 2017. The challenge consists in predicting the Land Cover class of a set of pixels given their image time series data acquired by the satellites. We propose an end-to-end learning approach employing both temporal and spatial info...

متن کامل

Using Deep Learning Method for Classification: A Proposed Algorithm for the ISIC 2017 Skin Lesion Classification Challenge

Skin cancer, the most common human malignancy, is primarily diagnosed visually by physicians . Classification with an automated method like CNN [2, 3] shows potential for challenging tasks . By now, the deep convolutional neural networks are on par with human dermatologist . This abstract is dedicated on developing a Deep Learning method for ISIC [5] 2017 Skin Lesion Detection Competition hoste...

متن کامل

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

Webly Supervised Learning for Skin Lesion Classification

Within medical imaging, manual curation of sufficient welllabeled samples is cost, time and scale-prohibitive. To improve the representativeness of the training dataset, for the first time, we present an approach to utilize large amounts of freely available web data through web-crawling. To handle noise and weak nature of web annotations, we propose a two-step transfer learning based training p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics11203275